MTH 605-Quiz 1 Solutions

1. Let $p: \widetilde{X} \rightarrow X$ be a covering space, where \tilde{X} is path-connected. If there exists $x_{0} \in X$ and $k \in \mathbb{N}$ such that $\left|p^{-1}\left(x_{0}\right)\right|=k$, then show that $\left|p^{-1}(x)\right|=k$ for each $x \in X$.
Solution. Suppose we assume that \tilde{X} is path-connected with a basepoint $\tilde{x}_{0} \in p^{-1}\left(x_{0}\right)$. Then by the lifting correspondence, there exists a surjective map $\phi: \pi_{1}\left(X, x_{0}\right) \rightarrow p^{-1}\left(x_{0}\right)$, defined by $\phi([\beta])=\tilde{\beta}(1)$, where $\tilde{\beta}$ is the unique lift of the loop β beginning at \tilde{x}_{0}. Let x_{1} be another point in X distinct from x_{0}. Since \tilde{X} is path-connected, so is X, and hence there exists an isomorphism $\hat{\alpha}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right)$, where α is a path in X from x_{0} to x_{1}. As α lifts to a unique path $\tilde{\alpha}$ beginning at \tilde{x}_{0}, we have the following commutative diagram:

where $f_{\alpha}:=\phi \circ \hat{\alpha} \circ \phi^{-1}$, is a well-defined surjective map (why?) induced by α. Hence, it follows that $\left|p^{-1}\left(x_{1}\right)\right|<\infty$. Finally by switching the roles of x_{0} and x_{1} and arguing as above, we also get a surjective map $p^{-1}\left(x_{1}\right) \rightarrow p^{-1}\left(x_{0}\right)$. Therefore, it follows that $\left|p^{-1}\left(x_{0}\right)\right|=\left|p^{-1}\left(x_{1}\right)\right|$.
2. Let X be complement of the union of n mutually disjoint lines in \mathbb{R}^{3} that are perpendicular to the $x y$-plane. Then show that X is homotopically equivalent to the wedge of n-circles. (Note that the wedge of n circles is n distinct copies of S^{1} joined at a single point.)
Solution. Let the mutually disjoint lines be $\ell_{1}, \ldots, \ell_{n}$. First, the homotopy $\mathbb{R}^{3} \times I \rightarrow \mathbb{R}^{3}$ defined by $H((x, y, z), t)=(x, y,(1-t) z)$ gives a deformation retraction of $\mathbb{R}^{3} \backslash \ell_{1} \cup \ell_{2} \cup \ldots \ell_{n}$ onto $\mathbb{R}^{3} \backslash\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, where x_{i} is the point of intersection of ℓ_{i} with the $x y$-plane. Next, we deformation retract $\mathbb{R}^{3} \backslash\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ onto $D \backslash\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, where D is a closed disk in \mathbb{R}^{3} enclosing $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Then we deformation retract $D \backslash\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ onto $D_{1} \cup D_{2} \cup \ldots \cup D_{n} \backslash\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, where each D_{i} is chosen to be a closed disk in the interior of D with center x_{i} such that $D_{i} \cap D_{i+1}=\left\{y_{i}\right\}$, for $1 \leq i \leq n-1$ and $D_{i} \cap D_{j}=\emptyset$ when $|i-j|>1$. Next, we simultaneously deformation retract each $D_{i} \backslash\left\{x_{i}\right\}$ onto its boundary $S_{i}:=\partial D_{i}$ to obtain a union of circles $C_{1} \cup C_{2} \cup \ldots \cup C_{n}$, where $C_{i} \cap C_{i+1}=\left\{y_{i}\right\}$, for $1 \leq i \leq n-1$ and $C_{i} \cap C_{j}=$ \emptyset when $|i-j|>1$. Then, we consider a path $\alpha=\beta_{1} * \beta_{2} * \ldots \beta_{n-2}$
in $C_{1} \cup C_{2} \cup \ldots \cup C_{n}$ from y_{1} to y_{n-1}, where each β_{i} is one of the subarcs in the circle S_{i} from y_{i} to y_{i+1}. Finally, by collapsing the path α in $C_{1} \cup C_{2} \cup \ldots \cup C_{n}$, we obtain an induced quotient map $C_{1} \cup C_{2} \cup \ldots \cup C_{n} \rightarrow \bigvee_{i=1} S^{1}$, which is a homotopy equivalence (why?).
